Topological properties of omega context-free languages

نویسنده

  • Olivier Finkel
چکیده

This paper is a study of topological properties of omega context free languages (ω-CFL). We first extend some decidability results for the deterministic ones (ωDCFL), proving that one can decide whether an ω-DCFL is in a given Borel class, or in the Wadge class of a given ω-regular language . We prove that ω-CFL exhaust the hierarchy of Borel sets of finite rank, and that one cannot decide the borel class of an ω-CFL, giving an answer to a question of [LT94]. We give also a (partial) answer to a question of [Sim92] about omega powers of finitary languages. We show that Büchi-Landweber’s Theorem cannot be extended to even closed ω-CFL: in a Gale-Stewart game with a (closed) ω-CFL winning set, one cannot decide which player has a winning strategy. From the proof of topological properties we derive some arithmetical properties of ω-CFL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On omega context free languages which are Borel sets of infinite rank

This paper is a continuation of the study of topological properties of omega context free languages (ω-CFL). We proved in [Topological Properties of Omega Context Free Languages, Theoretical Computer Science, Volume 262 (1-2), 2001, p. 669697] that the class of ω-CFL exhausts the finite ranks of the Borel hierarchy, and in [Borel Hierarchy and Omega Context Free Languages, Theoretical Computer ...

متن کامل

Ambiguity in omega context free languages

We extend the well-known notions of ambiguity and of degrees of ambiguity of 0nitary context free languages to the case of omega context free languages (!-CFL) accepted by B3 uchi or Muller pushdown automata. We show that these notions may be de0ned independently of the B3 uchi or Muller acceptance condition which is considered. We investigate 0rst properties of the subclasses of omega context ...

متن کامل

Borel hierarchy and omega context free languages

We give in this paper additional answers to questions of Lescow and Thomas [Logical Specifications of Infinite Computations, In:”A Decade of Concurrency”, Springer LNCS 803 (1994), 583-621], proving topological properties of omega context free languages (ω-CFL) which extend those of [O. Finkel, Topological Properties of Omega Context Free Languages, Theoretical Computer Science, Vol. 262 (1-2),...

متن کامل

Topological Complexity of Context-Free omega-Languages: A Survey

We survey recent results on the topological complexity of context-free ω-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-deterministic or deterministic context-free ω-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of amb...

متن کامل

Topological Complexity of omega-Powers: Extended Abstract

The operation V → V ω is a fundamental operation over finitary languages leading to ω-languages. It produces ω-powers, i.e. ω-languages in the form V , where V is a finitary language. This operation appears in the characterization of the class REGω of ω-regular languages (respectively, of the class CFω of context free ω-languages) as the ω-Kleene closure of the family REG of regular finitary la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 262  شماره 

صفحات  -

تاریخ انتشار 2001